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LE'ITER TO THE EDITOR 

Restricted valence site animals on the triangular lattice 

S G Whittingtont, G M Torriet and D S Gaunt$ 
t Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada 
$ Wheatstone Physics Laboratory, King's College, University of London, Strand, London 
WC2R 2LS, UK 

Received 5 February 1979 

Abstract. Exact values of the numbers of connected clusters of n sites, each site having 
valence no larger than U, are presented for the triangular lattice for U = 2 , 3 , 4  and 5 for small 
values of n. Assuming a plausible asymptotic form for the dependence of these numbers on 
n and U we show, using series analysis techniques, that the exponent characterising the 
dominant singularity in the generating function has the same value for all U 3 3  but a 
different value for U = 2. 

A lattice (site) animal is a cluster of sites of the lattice such that adjacent sites are joined 
by a bond and every site in the cluster can be reached from every other site in the cluster 
by a path along these bonds, i.e. a site animal is a connected section graph of the lattice. 
The numbers of these graphs containing n sites are of interest in the theory of 
percolation processes (Sykes and Glen 1976) and have been studied by a number of 
different techniques (e.g. Klarner 1967, Lunnon 1971, Ball and Coxeter 1974, Sykes 
and Glen 1976, Gaunt eta1 1976, Whittington and Gaunt 1978). If the number of site 
animals with n sites, per lattice site, is a, then Klarner (1967) has shown that 

and it is reasonable to assume that 

a, - n-'"". 

It seems that the exponent T is independent of the lattice in a given dimension, but 
depends on dimension. In two dimensions 7 is close to unity so that the singularity in the 
generating function 

G(x)= 1 + a,xn 
nz-1 

(3) 

is approximately logarithmic and, close to x = A-', 

G(x)  - -A In (1 - A x ) .  (4) 

Recently, Gaunt et a1 (1979) studied the numbers of animals on the square lattice in 
which the valence of each site in a cluster was not allowed to exceed some pre-assigned 
number, U, i.e. the number of bonds meeting at a site could not exceed U. If the number 
of animals with n sites having no vertex of degree greater than U is a,(v)  they showed, 
for the square lattice, that U , ( U ) ~ ' "  tends to a limit (A (U), say) for all U and, assuming that 

a,(u)-n-""'A(u)" ( 5 )  
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they showed that T(2)<0 but T(u)>O for u 3 3 .  They also presented numerical 
evidence that T(3) = T ( 4 )  = 1. These results are interesting in that (i) they extend the 
universality class of site animals on two-dimensional lattices and (ii) they show that 
U = 2 animals belong to a different universality class. Consequently, it is of interest to 
consider the behaviour on other lattices, especially one with a coordination number (4) 
greater than four. This allows an examination of the obvious hypothesis that the 
exponent changes between U = 2 and U = 3 and is then independent of U for larger 
values of v ,  for all lattices. 

In table 1 we present some exact enumeration data for the triangular lattice. The 
values for U =  6 up to n = 16 are reproduced from Sykes and Glen (1976). For U = 3 , 4  
and 5 we have obtained the numbers of clusters for up to 14, 13 and 13 vertices, 
respectively. For U = 2, the number of clusters with n vertices is the sum of the number 
of strongly embedded simple chains with n - 1 edges, [n - l ] ~ ,  and the number of 
strongly embedded polygons with n edges, [nIo, 

afl(2) = [n  - llc+[nlo. (6) 

We have enumerated ~ " ( 2 )  up to n = 17 and [n - l Ic  up to n = 21. Values of [n - l I c  
were previously available only through n = 14 (Fisher and Hiley 1961, Hioe 1967). As 
we commented elsewhere (Gaunt et a1 1979), the dominant asymptotic behaviour of 
~ ( 2 )  will be the same as [n  - l ] ~ ,  the number of (n  - 1)-step undirected neighbour- 
avoiding walks (NAW). 

Assuming that, close to x = l/A(u), 

G(x, U )  = 1 + u"(u)X" -[A/(l-T)][(l - I], (7) 
fl-1 

Table 1. Numbers of clusters a. ( U )  with maximum valence U, and simple chains [ n  - l ] ~ ,  
having n sites and strongly embeddable in the triangular lattice. 

It [n - llc an (2) ~ ( 3 )  a, (4) a,W a,(6) 

1 1 1 1 1 1 1 
2 3 3 3 3 3 3 
3 9 11 11 11 11 11 
4 27 27 44 44 44 44 
5 81 81 171 186 186 186 
6 237 238 689 808 814 814 
7 699 699 2 862 3 585 3 651 3 652 
8 2 037 2 040 12 117 16 200 16 677 16 689 

10 17 277 17 289 225 819 344 460 362 022 362 671 
11 50 151 50 169 990 225 1612 587 1 712 013 1 716 033 
1 2  145 161 145 220 4 377 206 7 608 157 8 158 541 8 182 213 
13 419 691 419 811 19480 313 36 131 209 39 132 064 39 267 086 

1211 637 87 198 762 189 492 795 14 1211 313 
15 3 492 171 3 492 915 918 837 374 
16 10055403 10057308 4 474 080 844 
17 28 925 679 28 930 281 
18 83 129 121 
19 238709829 
20 684939291 
21 1963 981 569 

9 5 949 5 951 52 002 74 271 77 263 77 359 
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we have used standard methods of series analysis (Gaunt and Guttmann 1974) to 
estimate A ( u ) ,  ~ ( o )  and A(o). The results are given in table 2. The estimates for o = 6 
are in excellent agreement with previous work (Sykes and Glen 1976, Guttmann and 
Gaunt 1978), while our estimates of A (2) and ~ ( 2 )  are a considerable improvement over 
earlier estimates (Fisher and Hiley 1961, Hioe 1967). A(v)  appears to be a monotone 
increasing function of U. ~ ( o )  appears to have the value unity for all U a 3 ,  i.e. the 
singularity in G is logarithmic, while 7(2)= -$. This agrees with our results on the 
square lattice, where 7(2)= -$  and 7(3)=7(4)= 1. It appears likely that such 
behaviour, i.e. a change from - 3  to 1 between o = 2 and 3, will persist for all 
two-dimensional lattices and that a corresponding change in the sign of the exponent as 
U changes from 2 to 3 will occur in three dimensions as well. The values obtained for the 
amplitudes are unremarkable, except to notice that A(2) =A(q), as we also found for 
the square lattice. The very slow variation of both A(v) and A (U) for the largest values 
of U should be noted; indeed, to within the quoted uncertainties we have A(4) = A(5) = 
A(6) and A (5) = A (6), although we are not necessarily speculating that these equalities 
hold exactly. 

Table 2. Estimates of critical parameters for triangular lattice. 

V A ( v )  ?(U) A b )  

2 2.826& 0.004 -$&0.06 0.272*0.010 
3 4*815f0*005 1 f 0.02 0.343 * 0.008 
4 5.135*0*010 1 f 0.03 0.280* 0.008 
5 5 ~ 1 8 0 ~ 0 ~ 0 1 0  1 f 0.03 0.276 * 0.008 
6 5.183f0*007 1 f 0.02 0.274 *0.006 

Using Pad6 approximant techniques we have examined each of the series to try to 
identify the subdominant singularities. For o 3 the singularity at x = l /h  ( v )  is the 
only one of any strength within a circle of radius about 3/A (U) centred on the origin. For 
o = 2 there appears to be an additional singularity, located on the negative real axis. 
Although its precise position is rather difficult to ascertain, it probably lies at x = 
- l / A  (2) as is also found (unpublished work) for the generating function of NAW. The 
generating function of self-avoiding walks (SAW) has a singularity at x = 1/p (where the 
SAW limit p is the analogue of A )  but not at -1/p (Hioe 1967, Watts 1975). This 
situation is analogous to the absence of an antiferromagnetic singularity in the high- 
temperature expansion of the zero-field susceptibility for the triangular lattice and so 
would not be expected to obtain for loose-packed lattices. For the square (Gaunt et a1 
1979) and honeycomb lattices, we have confirmed that symmetrically placed singulari- 
ties occur in all three generating functions. 

We have also added two terms to the o = 2 and U = 3 series for the square lattice: 

(8) 

(9) 
The earlier terms are tabulated by Gaunt eta1 (1979). Reanalysing the series including 
these extra terms simply confirms our previous estimates of A, 7 and A.  For complete- 
ness we also give here the number of (undirected) NAW on the square lattice with up to 

azo(2) = 14 319 334 ~ z i ( 2 )  = 33 687 146 

and 

~15(3) = 20 365 888 aI6(3)  = 75 559 395. 
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n = 25 sites, which form the dominant contribution to ~ " ( 2 ) .  The generating function is 

N ( x )  = 1 + c [n - l l c x "  
n s l  

= 1 + l x  +2x2 + 6x3+ 14x4+ 34x5 +82x6+ 1 9 8 ~ ~  +470x8+ 1 1 2 2 ~ '  

+2 662xlo+6 334x11+ 14 97Oxl2+35 5O6xl3+83 7 3 4 ~ ' ~  

+198 O86xl5+466 314x16+1 l 0 0 8 1 8 ~ ' ~ + 2  587 634x" 

+6 097 83Oxl9+ 14 316 4O2x2O+33 687 146x2'+79 008 8 7 0 ~ ~ ~  

+ 185 677 0 0 6 ~ ~ ~  +435 098 7 7 4 ~ ~ ~ +  1 021 404 9 9 8 ~ ~ ~  + . . . (10) 

and was previously available (Fisher and Hiley 1961, Hioe 1967; also Domb, Gillis and 
Wilmers, unpublished) only through order x l'. 

On the honeycomb lattice we have enumerated undirected NAW with up to n = 35 
sites giving 

N ( x ) =  1+ l x  + 1 ~ ~ ~ + 3 x ~ + 6 ~ ~ + 1 2 ~ ~ + 2 1 ~ ~ + 3 9 ~ ~ + 7 2 ~ ~ + 1 3 2 ~ ' + 2 4 3 ~ ~ ~  

+447x" +810xI2 + 1 4 8 2 ~ ' ~  + 2 6 8 8 ~ ' ~  +4 8 9 9 ~ ' ~  + 8 8 8 0 ~ ' ~  

+ 16 146x1'+29 199x1'+52 98Oxl9+95 733xZ0+ 173 427xZ1 

+313 0 8 6 ~ ~ ~ + 5 6 6  ~ O O X ~ ~ +  1021 6 2 3 ~ ~ ~ +  1846 2 0 3 ~ ~ ~  

+3 327 5 3 4 ~ ~ ~ + 6  007 563xZ7+ 10 820 763x2'+ 19 519 905x2' 

+35 138 5O8x3O+63 341 292x31+ 113 964 3 9 0 ~ ~ ~  

+ 205 302 499xJ3 + 369 21 1 7 4 6 ~ ~ ~  + 664 738 8 6 6 ~ ~ ~  + . . . . (11) 

We do not know of any earlier data for this problem. Series analysis of (1 1) suggests 
A(2)= 1.7832*0*0008, 7(2)= -f*0-015 and A(2)=0.381*0.010. The values of 
a,(3) up to n = 22 are tabulated by Sykes and Glen (1976), who estimate A(3) = 
3.04*0.02 and that ~ ( 3 )  is 'very close to unity'. We have used their series to estimate 
A(3) = 0.382 f 0-001 - 2.5AA where AA represents a change in A (3). Once again we 
have A(2) =A(q). 

To summarise, we have found that for site clusters on the triangular, square and 
honeycomb lattices the exponent T changes between U = 2 and U = 3 from ~ ( 2 )  = - f to 
~ ( 3 )  = 1 and is then independent of U for all larger values of U. 
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